Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACS Omega ; 7(51): 48416-48426, 2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2185529

ABSTRACT

SARS-CoV-2 has caused a global pandemic of COVID-19, posing a huge threat to public health. The SARS-CoV-2 papain-like cysteine protease (PLpro) plays a significant role in virus replication and host immune regulation, which is a promising antiviral drug target. Several potential inhibitors have been identified in vitro. However, the detailed mechanism of action and structure-activity relationship require further studies. Here, we investigated the structure-activity relationships of the series of derivatives of tanshinone IIA sulfonate sodium (TSS) and chloroxine based on biochemical analysis and molecular dynamics simulation. We found that compound 7, a derivative of chloroxine, can disrupt PLpro-ISG15 interaction and exhibits an antiviral effect for SARS-CoV-2 variants (wild type, delta, and omicron) at the low micromolar level. These studies confirmed that inhibiting PLpro-ISG15 interaction and, thus, restoring the host's innate immunity are effective methods for fighting against viral infection.

2.
Int J Biol Macromol ; 188: 137-146, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1345340

ABSTRACT

COVID-19 is a disease caused by SARS-CoV-2, which has led to more than 4 million deaths worldwide. As a result, there is a worldwide effort to develop specific drugs for targeting COVID-19. Papain-like protease (PLpro) is an attractive drug target because it has multiple essential functions involved in processing viral proteins, including viral genome replication and removal of post-translational ubiquitination modifications. Here, we established two assays for screening PLpro inhibitors according to protease and anti-ISGylation activities, respectively. Application of the two screening techniques to the library of clinically approved drugs led to the discovery of tanshinone IIA sulfonate sodium and chloroxine with their IC50 values of lower than 10 µM. These two compounds were found to directly interact with PLpro and their molecular mechanisms of binding were illustrated by docking and molecular dynamics simulations. The results highlight the usefulness of the two developed screening techniques for locating PLpro inhibitors.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Drug Repositioning , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites , Chloroquinolinols/chemistry , Chloroquinolinols/pharmacology , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/isolation & purification , Coronavirus Protease Inhibitors/chemistry , High-Throughput Screening Assays/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , SARS-CoV-2/drug effects
3.
Adv Ther (Weinh) ; 4(5): 2000224, 2021 May.
Article in English | MEDLINE | ID: covidwho-1095226

ABSTRACT

SARS-CoV-2 caused the emerging epidemic of coronavirus disease in 2019 (COVID-19). To date, there are more than 82.9 million confirmed cases worldwide, there is no clinically effective drug against SARS-CoV-2 infection. The conserved properties of the membrane fusion domain of the spike (S) protein across SARS-CoV-2 make it a promising target to develop pan-CoV therapeutics. Herein, two clinically approved drugs, Itraconazole (ITZ) and Estradiol benzoate (EB), are found to inhibit viral entry by targeting the six-helix (6-HB) fusion core of SARS-CoV-2 S protein. Further studies shed light on the mechanism that ITZ and EB can interact with the heptad repeat 1 (HR1) region of the spike protein, to present anti-SARS-CoV-2 infections in vitro, indicating they are novel potential therapeutic remedies for COVID-19 treatment. Furthermore, ITZ shows broad-spectrum activity targeting 6-HB in the S2 subunit of SARS-CoV and MERS-CoV S protein, inspiring that ITZ have the potential for development as a pan-coronavirus fusion inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL